1 | Introduction, Review of Random Variables, Entropy, Mutual Information, Chain Rules (PDF) |
2 | Jensen's Inequality, Data Processing Theorem, Fanos's Inequality (PDF) |
3 | Markov Chain, Entropy Rate of Random Processes (PDF) |
4 | Different Types of Convergence, Asymptotic Equipartition Property (AEP), Typical Set, Joint Typicality (PDF) |
5 | Data Compression, Kraft Inequality, Optimal Codes (PDF) |
6 | Huffman Codes, Sensitivity of Distribution, Elias Code (PDF) |
7 | Gambling (PDF) |
8 | Channel Capacity, Symmetric and Erasure Channels (PDF) |
9 | Coding Theorem (PDF) |
10 | Strong Coding Theorem (PDF) |
11 | Strong Coding Theorem (cont.) (PDF) |
12 | Feedback Capacity (PDF) |
13 | Joint Source Channel Coding (PDF) |
14 | Differential Entropy (PDF) |
| Recitation: Background Materials Review (PDF) |
15 | Gaussian Channel (PDF) |
16 | Gaussian Channels: Parallel, Colored Noise, Inter-symbol Interference (PDF) |
17 | Maximizing Entropy (PDF) |
18 | Gaussian Channels with Feedback (PDF) |
19 | Fading Channels (PDF) |
20 | Types, Universal Source Coding, Sanov's Theorem (PDF) |
21 | Multiple Access Channels (PDF) |
22 | Slepian-Wolf Coding (PDF) |
23 | Broadcast Channels (PDF) |
24 | Channel Side Information, Wide-band Channels (PDF) |