Courses:

Calculus with Applications >> Content Detail



Study Materials



Study Materials

Glossary of Notations
notationMeaning
iThe square root of minus one
f(x)The value of the function f at argument x
sin(x)The value of the sine function at argument x
exp(x)The value of the exponential function at argument x. This is often written as ex
a^xThe number a raised to the power x; for rational x is defined by inverse functions
ln xThe inverse function to exp x
axSame as a^x
logbaThe power you must raise b to in order to get a; blogba = a
cos xThe value of the cosine function (complement of the sine) at argument x
tan xWorks out to be sin x/cos x
cot xThe value of the complement of the tangent function or cos x/sin x
sec xValue of the secant function, which turns out to be 1/cos x
csc xValue of the complement of the secant, called the cosecant. It is 1/sin x
asin xThe value, y, of the inverse function to the sine at argument x. Means x = sin y
acos xThe value, y, of the inverse function to cosine at argument x. Means x = cos y
atan xThe value, y, of the inverse function to tangent at argument x. Means x = tan y
acot xThe value, y, of the inverse function to cotangent at argument x. Means x = cot y
asec xThe value, y, of the inverse function to secant at argument x. Means x = sec y
acsc xThe value, y, of the inverse function to cosecant at argument x. Means x = csc y
θA standard symbol for angle. Measured in radians unless stated otherwise. Used especially for atan x/y when x, y, and z are variables used to describe point in three dimensional space
i, j, kUnit vectors in the x y and z directions respectively
(a, b, c)A vector with x component a, y component b and z component c
(a, b)A vector with x component a, y component b
(a, b)The dot product of vectors a and b
a•bThe dot product of vectors a and b
(a•b)The dot product of vectors a and b
|v|The magnitude of the vector v
|x|The absolute value of the number x
ΣUsed to denote a summation, usually the index and often their end values are written under it with upper end value above it. For example the sum of j for j=1 to n is written as . This signifies 1 + 2 + … + n
MUsed to represent a matrix or array of numbers or other entities
|v>A column vector, that is one whose components are written as a column and treated as a k by 1 matrix
<v|A vector written as a row, or 1 by k matrix
dxAn "infinitesimal" or very small change in the variable x; also similarly dy, dz, dr etc...
dsA small change in distance
ρThe variable (x2 + y2 + z2)1/2 or distance to the origin in spherical coordinates
rThe variable (x2 + y2)1/2 or distance to the z axis in three dimensions or in polar coordinates
|M|The determinant of a matrix M (whose magnitude is the area or volume of the parallel sided region determined by its columns or rows)
||M||The magnitude of the determinant of the matrix M, which is a volume or area or hypervolume
det MThe determinant of M
M-1The inverse of the matrix M
v×wThe vector product or cross product of two vectors, v and w
θvwThe angle made by vectors v and w
A•B×CThe scalar triple product, the determinant of the matrix formed by columns A, B, C
uwA unit vector in the direction of the vector w; it means the same as w/|w|
dfA very small change in the function f, sufficiently small that the linear approximation to all relevant functions holds for such changes
df/dxThe derivative of f with respect to x, which is the slope of the linear approximation to f
f 'The derivative of f with respect to the relevant variable, usually x
∂f/∂xThe partial derivative of f with respect to x, keeping y, and z fixed. In general a partial derivative of f with respect to a variable q is the ratio of df to dq when certain other variables are held fixed. Where there is possible misunderstanding over which variables are to be fixed that information should be made explicit
(∂f/∂x)|r,zThe partial derivative of f with respect to x keeping r and z fixed
grad fThe vector field whose components are the partial derivatives of the function f with respect to x, y and z: [(∂f/∂x), (∂f/∂y), (∂f/∂z)] or (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; called the gradient of f
The vector operator (∂/∂x)i + (∂/∂x)j + (∂/∂x)k, called "del"
∇fThe gradient of f; its dot product with uw is the directional derivative of f in the direction of w
∇•wThe divergence of the vector field w; it is the dot product of the vector operator ∇ with the vector w, or (∂wx /∂x) + (∂wy /∂y) + (∂wz /∂z)
curl wThe cross product of the vector operator ∇ with the vector w
∇×wThe curl of w, with components [(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)]
∇•∇The Laplacian, the differential operator: (∂2/∂x2) + (∂/∂y2) + (∂/∂z2)
f "(x)The second derivative of f with respect to x; the derivative of f '(x)
d2f/dx2The second derivative of f with respect to x
f(2)(x)Still another form for the second derivative of f with respect to x
f(k)(x)The k-th derivative of f with respect to x; the derivative of f(k-1) (x)
TUnit tangent vector along a curve; if curve is described by r(t), T = (dr/dt)/|dr/dt|
dsA differential of distance along a curve
κThe curvature of a curve; the magnitude of the derivative of its unit tangent vector with respect to distance on the curve: |dT/ds|
NA unit vector in the direction of the projection of dT/ds normal to T
BA unit vector normal to the plane of T and N, which is the plane of curvature
τThe torsion of a curve; |dB/ds|
gThe gravitational constant
FThe standard symbol for force in mechanics
kThe spring constant of a spring
piThe momentum of the i-th particle
HThe Hamiltonian of a physical system, which is its energy expressed in terms of {ri} and {pi}, position and momentum
{Q, H}The Poisson bracket of Q and H
An antiderivative of f(x) expressed as a function of x
The definite integral of f from a to b. When f is positive and a < b holds, then this is the area between the x axis the lines y = a, y = b and the curve that represents the function f between these lines
L(d)A Riemann sum with uniform interval size d and f evaluated at the left end of each subinterval
R(d)A Riemann sum with uniform interval size d and f evaluated at the right end of each subinterval
M(d)A Riemann sum with uniform interval size d and f evaluated at the maximum point of f in each subinterval
m(d)A Riemann sum with uniform interval size d and f evaluated at the minimum point of f in each subinterval

 








© 2017 Coursepedia.com, by Higher Ed Media LLC. All Rights Reserved.