| 1 | Estimation Theory
  Introduction | (PDF) | 
| 2 | Some Probability Distributions | (PDF) | 
| 3 | Method of Moments | (PDF) | 
| 4 | Maximum Likelihood Estimators | (PDF) | 
| 5 | Consistency of MLE
  Asymptotic Normality of MLE, Fisher Information | (PDF) | 
| 6 | Rao-Crámer Inequality | (PDF) | 
| 7 | Efficient Estimators | (PDF) | 
| 8 | Gamma Distribution
  Beta Distribution | (PDF) | 
| 9 | Prior and Posterior Distributions | (PDF) | 
| 10 | Bayes Estimators
  Conjugate Prior Distributions | (PDF) | 
| 11 | Sufficient Statistic | (PDF) | 
| 12 | Jointly Sufficient Statistics
  Improving Estimators Using Sufficient Statistics, Rao-Blackwell Theorem | (PDF) | 
| 13 | Minimal Jointly Sufficient Statistics
  χ2 Distribution | (PDF) | 
| 14 | Estimates of Parameters of Normal Distribution | (PDF) | 
| 15 | Orthogonal Transformation of Standard Normal Sample | (PDF) | 
| 16 | Fisher and Student Distributions | (PDF) | 
| 17 | Confidence Intervals for Parameters of Normal Distribution | (PDF) | 
| 18 | Testing Hypotheses
  Testing Simple Hypotheses
  Bayes Decision Rules | (PDF) | 
| 19 | Most Powerful Test for Two Simple Hypotheses | (PDF) | 
| 20 | Randomized Most Powerful Test
  Composite Hypotheses. Uniformly Most Powerful Test | (PDF) | 
| 21 | Monotone Likelihood Ratio
  One Sided Hypotheses | (PDF) | 
| 22 | One Sided Hypotheses (cont.) | (PDF) | 
| 23 | Pearson's Theorem | (PDF) | 
| 24 | Goodness-of-Fit Test
  Goodness-of-Fit Test for Continuous Distribution | (PDF) | 
| 25 | Goodness-of-Fit Test for Composite Hypotheses | (PDF) | 
| 26 | Test of Independence | (PDF) | 
| 27 | Test of Homogeneity | (PDF) | 
| 28 | Kolmogorov-Smirnov Test | (PDF) | 
| 29 | Simple Linear Regression
  Method of Least Squares
  Simple Linear Regression | (PDF) | 
| 30 | Joint Distribution of the Estimates | (PDF) | 
| 31 | Statistical Inference in Simple Linear Regression | (PDF) | 
| 32 | Classification Problem | (PDF) |