The lecture notes were prepared by the Instructor Dr. Emma Carberry and the students: Kai Fung, David Glasser, Michael Nagle, Nizam Ordulu. The full set of lecture notes are available as a single file (PDF) or mapped to the lectures in the table below.
lec # | TOPICS |
---|---|
1 | Introduction (PDF) |
2 | A Review on Differentiation (PDF) |
3 | Inverse Function Theorem (PDF) |
4 | Implicit Function Theorem (PDF) |
5 | First Fundamental Form (PDF) |
6 | Curves (PDF) |
7 | Gauss Map I: Background and Definition (PDF) |
8 | Gauss Map II: Geometric Interpretation (PDF) |
9 | Gauss Map III: Local Coordinates (PDF) |
10 | Introduction to Minimal Surfaces I (PDF) |
11 | Introduction to Minimal Surfaces II (PDF) |
12 | Review on Complex Analysis I (PDF) |
13 | Review on Complex Analysis II (PDF) |
14 | Isothermal Parameters (PDF) |
15 | Bernstein's Theorem (PDF) |
16 | Manifolds and Geodesics I (PDF) |
17 | Manifolds and Geodesics II (PDF) |
18 | Complete Minimal Surfaces I (PDF) |
19 | Complete Minimal Surfaces II (PDF) |
20 | Weierstrass-Enneper Representations (PDF) |
21 | Gauss Maps and Minimal Surfaces (PDF) |